Runtime Assignment of Reconfigurable Hardware Components for Image Processing Pipelines

نویسندگان

  • Heather M. Quinn
  • Laurie A. Smith King
  • Miriam Leeser
  • Waleed Meleis
چکیده

The combination of hardware acceleration and flexibility make FPGAs important to image processing applications. There is also a need for efficient, flexible hardware/software codesign environments that can balance the benefits and costs of using FPGAs. Image processing applications often consist of a pipeline of components where each component applies a different processing algorithm. Components can be implemented for FPGAs or software. Such systems enable an image analyst to work with either FPGA or software implementations of image processing algorithms for a given problem. The pipeline assignment problem chooses from alternative implementations of pipeline components to yield the fastest pipeline. Our codesign system solves the pipeline assignment problem to provide the most effective implementation automatically, so the image analyst can focus solely on choosing components which make up the pipeline. However, the pipeline assignment problem is NP complete. An efficient, dynamic solution to the pipeline assignment problem is a desirable enabler of codesign systems which use both FPGA and software implementations. This paper is concerned with solving pipeline assignment in this context. Consequently, we focus on optimal and heuristic methods for fast (fixed time limit) runtime pipeline assignment. Exhaustive search, integer linear programming and local search methods for pipeline assignment are investigated. We present experimental findings for pipelines of 20 or fewer components which show that in our environment, optimal runtime solutions are possible for smaller pipelines and nearly optimal heuristic solutions are possible for larger pipelines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FPGA Implementation of JPEG and JPEG2000-Based Dynamic Partial Reconfiguration on SOC for Remote Sensing Satellite On-Board Processing

This paper presents the design procedure and implementation results of a proposed hardware which performs different satellite Image compressions using FPGA Xilinx board. First, the method is described and then VHDL code is written and synthesized by ISE software of Xilinx Company. The results show that it is easy and useful to design, develop and implement the hardware image compressor using ne...

متن کامل

Pipeline Vectorization Markus

This paper presents pipeline vectorization, a method for synthesizing hardware pipelines based on software vectorizing compilers. The method improves efficiency and ease of development of hardware designs, particularly for users with little electronics design experience. We propose several loop transformations to customize pipelines to meet hardware resource constraints while maximizing availab...

متن کامل

An Efficient Framework for Floor-plan Prediction of Dynamic Runtime Reconfigurable Systems

Received Dec 16, 2014 Revised Mar 23, 2015 Accepted Apr 20, 2015 Several embedded application domains for reconfigurable systems tend to combine frequent changes with high performance demands of their workloads such as image processing, wearable computing and network processors. Time multiplexing of reconfigurable hardware resources raises a number of new issues, ranging from run-time systems t...

متن کامل

Hardware Task Scheduling for Partially Reconfigurable FPGAs

Partial reconfiguration (PR) of FPGAs can be used to dynamically extend and adapt the functionality of computing systems, swapping in and out HW tasks. To coordinate the on-demand task execution, we propose and implement a run time system manager for scheduling software (SW) tasks on available processor(s) and hardware (HW) tasks on any number of reconfigurable regions of a partially reconfigur...

متن کامل

Runtime Environment for Dynamically Reconfigurable Embedded Sy

A runtime environment has been developed to enable the seamless integration of different hardware and software implementation technologies (DSP’s, FPGA’s, ASIC’s). The runtime environment is responsible for the management of dynamic system reconfiguration, including software reconfiguration for the parallel DSP’s and hardware reconfiguration for the FPGA’s in the system. This paper describes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003